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Diffraction Analysis Effort

• The rigorous diffraction loss computation algorithm for many 
diffraction edges is very time consuming even with state-of-the–art 
computers.

• A faster diffraction loss computation algorithm for many diffraction 
edges is needed for the short-range mobile-to-mobile propagation 
model.

• The rigorous diffraction algorithm of L.E. Vogler has been verified to 
be extremely accurate when compared to measured data, but the 
run times for many edges are too excessive.

• Need to find an alternative algorithm by comparing the accuracy of 
four faster diffraction algorithms to the L.E. Vogler algorithm for 
many diffraction loss scenarios with multiple edges.



Diffraction Analysis Effort

• Rigorous Vogler method with run times on the order of 
seconds on a PC, whereas alternative methods run in 
microseconds.

• PC based mobile-to-mobile propagation model under 
development will need to make diffraction computations 
for many radials for interference and area predictions.

• If ray path from one edge to next is in transition zone and 
aligns too closely with incident shadow boundary, an 
error results in computation.

• In most cases this error is detectable, predictable and 
can be corrected.



Four Alternative Diffraction Algorithms 

• The Bullington Algorithm- simplest method to implement, but least 
accurate.

• The Epstein/Peterson Algorithm-slightly more complex than 
Bullington algorithm, but with improved accuracy.

• The Deygout Algorithm-more complex than previous two algorithms, 
but with improved accuracy.

• The Giovaneli Algorithm-most complex to implement when 
compared to previous three algorithms, but with improved accuracy.

• The Bullington algorithm has been determined to be the least 
accurate diffraction loss computation for many multiple edges.



Diffraction Analysis Approach

• All four of the alternative diffraction algorithms are graphical techniques, and 
they are usually computed manually.

• Mathematical algorithms for each of the four alternative diffraction  
algorithms were developed, so that they could be implemented in computer 
code and incorporated into the short-range mobile-to-mobile model.

• The diffraction algorithm that is selected must apply to all of the possible 
diffraction edge geometries that can occur.

• Fifty different scenarios were tested against the four alternative algorithms 
for an initial attempt at simulation of many different scenarios.

• These scenarios included many variations of: varying distances between 
edges, different heights,  and different ratios of heights-to-distances 
between edges over the range of frequencies.

• It was necessary to resurrect the Vogler diffraction algorithm, which is a 
complex computation of multiple  summations and multiple integrals.



The Vogler Method

• The knife-edges are assumed to be perfectly conducting screens placed 
normal to the direction of propagation extending to infinity in both directions 
and vertically downwards.

• Vogler derived the multiple knife-edge solution using Fresnel-Kirchoff
Theory.

• The expression for the multiple knife-edge attenuation function is in the form 
of a multiple integral, which is developed into a series which can be 
numerically evaluated.

• The terms of this series involve repeated integrals of the complementary 
error function.

• In the application of Fresnel-Kirchoff theory to multiple knife-edge 
diffraction, the elements of the wavefront are formed in the aperture above 
each knife-edge and the assumption is made that the field at any particular
element arises solely from the total field over the preceding aperture. 

• The solution is a successive summation of integrals.















-100

-50

0

50

0 10 20 30 40 50

Deygout all edges
Giovaneli all edges
Epstein/Peterson all edges
Bullington all edges

Case Number

 L
os

s 
D

iff
er

en
ce

  (
dB

)

Diffraction Loss Difference Comparison wrt Vogler



-40

-20

0

20

0 10 20 30 40 50

Deygout all edges
Giovaneli all edges
Epstein/Peterson all edges

Case number

D
iff

ra
ct

io
n 

Lo
ss

 D
iff

er
en

ce
 w

rt 
Vo

gl
er

 (d
B

)

Diffraction Loss Difference Comparison wrt Vogler



-40

-20

0

20

0 10 20 30 40 50

Deygout Big 3
Giovaneli Big 3
Epstein/Peterson Big 3

Lo
ss

 D
iff

er
en

ce
 (d

B)

Diffraction Loss Difference wrt Vogler



-40

-20

0

20

0 10 20 30 40 50

Deygout no sub-path edges
Giovaneli no sub-path edges
Epstein/Peterson no sub-path edges

Case Number

Lo
ss

 D
iff

er
en

ce
 (d

B)

Diffraction Loss Difference Comparison wrt Vogler



-40

-20

0

20

0 10 20 30 40 50

Deygout ITU23
Deygout no sub-path edges
Deygout Big 3
Deygout All Edges

Case Number

Lo
ss

 D
iff

er
en

ce
 (d

B)

Diffraction Loss Difference Comparison wrt Vogler



-40

-20

0

20

0 10 20 30 40 50

Epstein Peterson Big 3
Epstein/Peterson no sub-path edges
Epstein/Peterson Big 3 Corrected
Epstein Peterson no sub-path edges corrected
Epstein Peterson all edges corrected
Epstein/Peterson all edges

Case Number

Lo
ss

 D
iff

er
en

ce
 (d

B)

Diffraction Loss Difference Comparison wrt Vogler



-40

-20

0

20

0 10 20 30 40 50

Epstein Peterson Big 3
Epstein/Peterson no sub-path edges
Epstein Peterson all edges corrected
Epstein/Peterson all edges

Case Number

Lo
ss

 D
iff

er
en

ce
 (d

B)

Diffraction Loss Difference Comparison wrt Vogler



-40

-20

0

20

0 10 20 30 40 50

Giovaneli no sub-path edges
Giovaneli Big 3 edges
Giovaneli all edges

Case Number

Lo
ss

 D
iff

er
en

ce
 (d

B)

Diffraction Loss Difference wrt Vogler



-40

-20

0

20

0 10 20 30 40 50

Giovaneli no sub-path edges
Deygout no sub-path edges
Deygout ITU23
Epstein/Peterson no sub-path edges
Epstein/Peterson all edges corrected

Case Number

Lo
ss

 D
iff

er
en

ce
 (d

B)

Diffraction Loss Difference Comparison wrt Vogler



-20

-10

0

10

20

30

0 10 20 30 40 50

Giovaneli no sub-path edges
Deygout no sub-path edges
Deygout ITU23
Epstein/Peterson no sub-path edges
Epstein/Peterson all edges corrected

Case Number

Lo
ss

 D
iff

er
en

ce
 (d

B)

Diffraction Loss Difference Comparison wrt Vogler





0

20

40

60

80

100

0 2 4 6 8 10

EPALL
EPALLC
DGB3ITU
DGALL
DGB3
GVALL
Vogler
GTD

Diffraction Angle (mrad)

D
iff

ra
ct

io
n 

Lo
ss

 (d
B

)
Comparison of Diffraction Algorithms With Vogler Algorithm for Five Equally Spaced Edges and Equal Diffraction Angles



0

20

40

60

80

100

0 2 4 6 8 10

EPALL
DGB3ITU
GVALL
Vogler

Diffraction Angle (mrad)

D
iff

ra
ct

io
n 

Lo
ss

 (d
B

)

Comparison of Diffraction Algorithms With Vogler Algorithm for Five Equally Spaced Edges and Equal Diffraction Angles



0

20

40

60

80

100

0 2 4 6 8 10

EPALL
EPALLC
Vogler

Diffraction Angle (mrad)

D
iff

ra
ct

io
n 

Lo
ss

 (d
B

)
Comparison of Diffraction Algorithms With Vogler Algorithm for Five Equally Spaced Edges and Equal Diffraction Angles



0

20

40

60

80

100

0 2 4 6 8 10

DGB3ITU
DGALL
DGB3
Vogler

Diffraction Angle (mrad)

D
iff

ra
ct

io
n 

Lo
ss

 (d
B

)
Comparison of Diffraction Algorithms With Vogler Algorithm for Five Equally Spaced Edges and Equal Diffraction Angles



0

20

40

60

80

100

0 2 4 6 8 10

GVALL
Vogler
GTD

Diffraction Angle (mrad)

D
iff

ra
ct

io
n 

Lo
ss

 (d
B

)
Comparison of Diffraction Algorithms With Vogler Algorithm for Five Equally Spaced Edges and Equal Diffraction Angles



Results

• It was found by comparative computations that removing the sub-
path obstacles improves agreement between the Deygout method 
and the Vogler method, but degrades the Epstein/Peterson 
method’s agreement with the Vogler method.

• Comparative computations show that the Deygout method achieves 
better agreement with the Vogler method when only the major three 
edges are included in the computation of diffraction loss.

• Further investigations of different geometric configurations 
representing additional diffraction scenarios will be run comparing 
the alternative methods with the Vogler method.



Results

• When a ray path from one edge to the next consecutive edge is in the 
transition region and near the incident or reflection shadow boundary, the 
alternative methods fail to compute the diffraction loss correctly.

• Computation of these ray-path angles and shadow boundaries confirm this.
• The procedure and order of computing edge diffraction loss is different for 

each of the alternative methods investigated.
• As a result, for the same diffraction scenario, one method may avoid 

alignment of the ray path with the incident shadow boundary, and another 
may align the ray path with the incident shadow boundary.

• The method that avoids this alignment will predict the diffraction loss with 
better accuracy, if the deviation of the ray path is large enough.

• An approach under study for selecting a diffraction method that achieves 
better accuracy is to use one method that has the largest deviation between 
the ray path and the incident shadow boundary.

• Another approach under study is to determine the magnitude of the error 
using the Fresnel Transition Function that provides a correction to the 
alternative method predictions. 



Conclusions

• The diffraction losses for the four alternative algorithms were compared to 
the more rigorous Vogler algorithm for many scenarios.

• Preliminary results of this analysis show where the alternative multiple knife-
edge methods investigated can be used in place of the vigorous Vogler
diffraction method to reduce computation time while maintaining suitable 
accuracy.

• In addition, the analysis has demonstrated that any one of the three other 
alternative methods may be more suitable than the others for a particular  
knife-edge scenario.  

• These scenarios included many variations of: varying distances between 
edges, different heights,  and different height-to-distance between edge 
ratios over the range of desired frequencies.

• Which alternative diffraction method works best in a given scenario depends 
on how a method treats sub-path obstacles and the alignment of the 
deflection angles wit the shadow boundaries at the edges.


